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ABSTRACT 

A high pressure and temperature combustion chamber was designed to compare the 

ignition properties of different fuels, including conventional F76 diesel and hydrotreated 

renewable diesel (HRD), derived from algae. Conditions were selected to capture the 

operating conditions within a large number of Navy systems, testing at a range of 

temperatures from 800–1340 °F and pressures as high as 20 atm. Three Navy-relevant 

injectors were procured for the testing as well as a commercial injector made by Sturman 

Industries. The Sturman diesel injector was characterized up to a fuel tip pressure of 9600 

psi and produced Sauter Mean Diameters of approximately 90 microns, generally 

showing improved atomization for F-76 when compared to HRD at similar conditions. 

The combustion chamber utilized dynamic air injection with increased turbulence and the 

ability to alter the amounts of combustion products including CO, CO2 and H2O that 

typically exist in real engines from the previous combustion event. Qualification testing 

of the combustion chamber evaluated final pressures of up to 15 atmospheres and 

temperatures of 472 °F, but revealed heat losses during the dynamic air injection events, 

resulting in temperatures below expected values and auto-ignition conditions for fuels 

under consideration. A fluidized bed heat exchanger will be implemented to supplement 

the existing design and reach the desired temperatures. 
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I. INTRODUCTION 

A. BACKGROUND AND HISTORY 

Petroleum-based fuel is a widely used source of energy around the world. The 

United States Navy relies heavily on petroleum-based fuels to conduct defense operations 

and power many of its ships, aircraft and weapons. In fiscal year 2008, the Navy 

consumed approximately 46,000 barrels per day (bpd) of F-76 diesel fuel to power its 

ships and other combat vehicles and 47,000 bpd of JP-5 jet fuel to fly its aircraft [1]. In 

the past decade the U.S. Department of Defense (DoD) has shown increased interest in 

exploring alternative fuels for use in engines that may have been in service for decades. 

The use of alternative fuels in such systems presents challenges in terms of seal 

compatibility, combustion efficiency, and general operability. This interest has been 

sparked by environmental issues, concerns about future supply and cost of petroleum-

based products and the need to decrease the military’s dependence on foreign suppliers.  

In October of 2009, Secretary of the Navy Ray Mabus announced that by the year 

2020 he intended for the U.S. fleet to fulfill half of its energy needs through alternative 

sources of energy. This would mean cutting the approximately 100,000 bpd of petroleum-

based fuels used by the Navy down to 50,000 bpd. In addition, Secretary Mabus 

discussed a “Green Strike Group,” which will consist of nuclear-powered platforms as 

well as ships and aircraft powered entirely by alternatives to petroleum-based fuels. This 

fleet would be deployable by the year 2016 [2]. 

Since Secretary Mabus’ announcement the Navy has begun to test alternative 

fuels in its existing engines. On April 22, 2010, the Navy showcased a supersonic test of 

an F/A-18 Super Hornet fighter aircraft, nicknamed the “Green Hornet,” using a 50/50 

blend of JP-5 petroleum-based jet fuel and an alternative fuel derived from the Camelina 

sativa plant [3]. In October of 2010 the first full test of a naval vessel was conducted 

using a 50/50 blend of F-76 petroleum-based diesel fuel and hydrotreated renewable 

diesel (HRD), derived from algae [4]. 
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The Navy’s tests of alternative fuel blends have been extremely successful, but 

more extensive study of alternative fuel is needed before they can be permanently 

implemented in combat systems. Many of the tests have been conducted for short 

durations and have only used samples of 50% conventional fuel and 50% alternative fuel. 

Further testing of pure blends of the new fuels can provide insight into physical and 

chemical differences between the fuels that could provide information on the potential 

performance of alternative fuels in legacy engines if other material compatibility issues 

can be overcome.  

The atomization characteristics of alternative fuels when they are injected into a 

diesel engine directly affect the behavior of the fuel in the chamber of the engine. A fuel 

that breaks up into small particles and mixes with the air quickly will show more complete 

combustion than one which breaks up more slowly. Comparing the resulting particle size 

for the various fuels generated during the injection process can show how completely 

alternative fuels will combust in comparison with well-known fuels such as F-76. 

Differences in chemical properties between fuels also have a large impact on the 

ignition delay time, which characterizes the amount of time between fuel injection and 

auto-ignition of the fuel due to the high temperature and pressure in the cylinder. This 

information is used to define the cetane number, which is a relative measure of the auto-

ignition tendency. If a fuel injected into a diesel engine does not auto-ignite rapidly 

enough it can cause “knock,” potentially causing damage to the components of the engine 

[5]. Diesel knock is an explosion, not a deflagration, caused by excessive premixing of 

fuel with air prior to ignition, leading to a large amount of energy release in a short time 

after ignition. The need to determine the ignition delay time of alternative diesel fuels at 

peak pressures and temperatures inspired the design of a high-pressure and temperature 

combustion chamber. Optical techniques were considered and implemented from the 

design stage to more accurately determine how long the fuel takes to auto-ignite. 

In the past, alternative fuels have been studied in laboratory research using 

research-specific injectors. However, for this project several Navy-specific injectors were 

considered in order to study the effects of alternative fuels in real military applications. 

Table 1 shows the Navy platforms and engine information for each of the injectors that 

was considered. These injectors vary in size and flow rate depending on the engines they 
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are used in. Three of the injectors in Table 1 were selected for this research to provide a 

wide range of engine size and Navy application. The three injectors chosen were the 

Yanmar, the CAT, and the EMD. 

Ship Class or 
Vehicle 

Designation 
Use Engine and Size Cyl. Vol. (L) 

Bore (in) Injector Type 

Special Warfare 
boats Propulsion Yanmar 6LPA-STP 

DI, I-6, 4.16 L 
0.694 L 
3.70 in Nozzle 

HMMWV Propulsion AM General 
IDI, V-8, 6.5 L 

0.813 L 
4.06 in Nozzle 

FFG-7 Frigate Ship service 
generator 

CAT 3512 
DI, V-12, 51.8 L 

4.32 L 
6.70 in 

Electronically 
controlled,  

mechanically 
actuated unit 

injector 

SSN-774 
Virginia-Class 

Submarine 

Emergency 
generator 

CVN-68 
Nimitz-Class 

Aircraft Carrier 

Emergency 
generator 

EMD 645-E5 
DI, V-16, 169 L 

10.6 L 
9.06 in 

Mechanical 
unit injector 

SSBN 726 
Ohio-Class 
Submarine 

Emergency 
generator 

Fairbanks-Morse 
38D 8-1/8 

Opposed Piston 

17.0 L 
8.13 in Nozzle 

SSN-688 Los 
Angeles-Class 

Submarine 
SSN-21 

Seawolf-Class 
Submarine 

LSD-41 
Whidbey 

Island-Class 
Dock Landing 

Ship 

Ship service 
generator 

LPD-17 San 
Antonio-Class 
Amphibious 

Transport Dock 

Propulsion 
Colt-Pielstick PC 
2.5 V-16, 1250 L 

(est.) 

78 L (est.) 
16 in Nozzle 

 

Table 1.   Injectors for Research Consideration 
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B. TYPES OF ALTERNATIVE DIESEL FUEL 

There are many different types of possible alternative diesel fuels currently under 

consideration. Among the different categories considered here are biodiesel, Fischer-

Tropsch (FT), hydrotreated, and direct sugar to hydrocarbon (DSH). These different 

biofuels will be discussed in the following paragraphs. 

Biodiesel is a type of biofuel that is being increasingly used in the United States. 

It is produced by reacting raw oil such as soybean oil with an alcohol, commonly 

methanol or ethanol, which produces glycerol and a monoalkyl-ester molecule [6]. The 

glycerol is a byproduct that can be sold commercially and the monoalkyl-ester is 

“biodiesel,” which can be used as-is or in combination with other diesel fuel. This 

process used to produce biodiesel fuel is called transesterification. Biodiesel performs 

much like conventional diesel fuel, but there are also issues with its use. Some 

conventional sealing materials will not seal correctly with high concentrations of 

biodiesel, meaning that the fuel must either be used in small percentages in mixtures or 

the sealing material must be replaced in existing engines. Biodiesel also absorbs water, 

which allows organisms to grow in the fuels, potentially building up enough to clog 

filters if left standing too long. Finally, at colder temperatures the fuel thickens and stops 

flowing well, meaning that it must be heated in cold climates [5]. Because of these 

problems the U.S. military has moved away from using biodiesel. 

Fischer-Tropsch fuel is liquid fuel typically derived from coal. The process used 

to produce this fuel has been used since the 1920s and 1930s in Germany. Fischer-

Tropsch fuels accounted for 90 percent of the fuel used by the Luftwaffe in World War 

II. This fuel is produced in a three-step process. The first step is gasification, in which a 

feedstock fuel, such as a coal, is heated with steam to produce CO2, H2, and CO as well 

as a small amount of methane. The second step, when steam is reacted with CO in order 

to produce more H2, is called the synthesis gas shift. Finally, reaction over a catalyst bed 

allows the formation of higher carbon-number molecules from the synthesis gas with 

water as a side product. These molecules are very similar to those that are found in 

conventional diesel fuel and are known to have high cetane numbers [7]. 
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Hydrotreated diesel fuels can be made using various hydrocarbon feedstocks 

particularly of biological origin, such as vegetable oils and animal fats. Some of the 

common oils that are used are rapeseed, sunflower, soybean, and palm oil [8]. The 

hydrotreating process produces high quality fuel with similar properties to Fischer-

Tropsch fuels. In this process, the oils are pretreated to remove solid impurities. 

Hydrogen is used to convert the fatty acids in these oils into fuels. The hydrotreatment 

produces synthetic versions of diesel fuel as well as gasoline and liquefied petroleum gas, 

which can be used for energy purposes [9]. Hydrotreated vegetable oil fuels have high 

cetane numbers, which means that autoignition is more rapid, implying easier cold-starting 

and fewer particulates in the combustion products than most other diesel fuels. 

Hydrotreated fuels work in existing engines and can be used in high concentrations. An 

advantage of these fuels is that they can reduce emissions, including nitrogen oxides, 

particle emissions, aldehydes, benzene, and polycyclic aromatic hydrocarbons (PAHs) [8]. 

Synthetic Paraffinic Kerosene (SPK) is a type of fuel that has a similar production 

process to hydrotreated fuels but is used in the aviation industry. The same bio-derived 

oils used for the hydrotreatment process are purified by removing solid impurities. 

Oxygen molecules are removed from the oils and hydrogen is used to convert the 

molecules to paraffins, single-bonded carbon chains bonded with hydrogens. Finally, the 

long-chain paraffins that represent the types of molecules in diesel fuel are broken up into 

shorter carbon chains that are commonly found in jet fuel [10]. Figure 1 shows the 

molecules through the process of producing SPK. This fuel is being looked into by 

Boeing and other large commercial airlines as a potential alternative fuel that will help 

lower emissions and perform well in existing engines. Boeing’s June 2009 report states 

that in all the tests that have been conducted SPK has “either met or exceeded the 

performance specifications for jet fuel” [10]. 
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Figure 1.  Chemical process used to produce SPK. From [10] 

Direct sugar to hydrocarbon (DSH) fuel is another type of biofuel described in a 

2012 article by Anbarasan et al. It is created by using bacteria to convert sugar to 

products that can be used to make fuel. The bacteria Clostridium acetobutylicum 

produces a mixture of acetone, n-butanol, and ethanol (ABE). In this paper the ABE is 

reacted using different catalysts and at different temperatures to produce longer carbon 

chains more representative of the size of molecules in diesel fuel. Oxygen is removed 

from the products of this process to produce C7 to C15 paraffins which can be used as 

fuel. Anbarasan et al.’s team was able to complete this process converting 38 percent of 

the carbon in the initial sugars to carbon in the product fuel [11]. 

Table 2 compares the properties of the types of fuels that have been discussed in 

this section. Each of these fuels will have varying properties based on the small 

differences in their production process or in the feedstock. Table 2 is intended to give a 

basic idea of the ranges of values that will be found for these properties. In Table 2 Tx is 

the temperature at which “x” percent of a fuel has vaporized, and LHV stands for lower 

heating value. 
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Fuel 

 
 Properties 

F-76 BD FT HRD SPK DSH 

ρ [kg/m^3] 844.2 a 885.1 753.9 a 778.1 a 740 766 a 

σ [mN/m] 25.8 b 24.0 25.3 24.9 b 26.8 26 

µ (cSt) 2.955 c 6.489 4.503 2.748 c 1.088 c 4.1 a 

T10 -T90 [°C] - - 173-244 - - 244-245 

T50 [°C] - - 207.5 - - 245 

LHV 
[MJ/kg] 42.75 37.6 43.94 43.96 44.05 43.9 

Cetane No. 52 56 75 ~75 24.7 60 

Composition 
 

Wt% C 
Wt% H 
Wt% O 

% paraffin 
% olefin 

% aromatic 
 

 
 

86.4 
13.32 

0 
70.7 
2.3 
27 
 

 
 
- 
- 

10.9 
- 
- 
- 
 

 
 

96.78 
3.22 

0 
95.3 
1.1 
3.6 

 

 
 

85 
15 
0 

98.5 
0.9 
0.6 

 

 
 

84.8 
15.2 

0 
94.3 
4.7 
1.0 

 

 
 

85.1 
14.9 

0 
99.9 

0 
0 
 

Table 2.   Properties of biodiesel fuels at STP (20°C) After [6], [12]–[18]  
a Property found at 15° C 

b Property found at 24.2° C 
c Property found at 40° C 
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C. SPRAY STRUCTURE 

The discussion of diesel fuel spray properties requires understanding the basic 

structure of a diesel spray. Before optical techniques were developed, limited information 

was available regarding the breakup and structure of diesel sprays. Flynn et al. describe 

many different hypotheses for spray structure [19]. An initial model proposed by 

researchers in the 1970s was that the diesel spray was composed of a very fuel-rich center 

which became leaner radially. The fuel would react at a distance from the core where 

there was enough oxygen mixed in with the fuel to generate a combustible mixture. In 

more recent models the fuel is in liquid form when it is injected and breaks up into tiny 

droplets. Hot air from the cylinder surrounding the spray is entrained into the jet, which 

causes the fuel around the outside regions of the spray to vaporize. Once there is enough 

oxygen entrained in the spray combustion begins as a diffusion flame where the fuel 

vapor and hot air meet. The core of the jet is mostly fuel, either in liquid or vapor form. 

Figure 2 shows schematics of the early and more recent spray models, respectively [19]. 

 
Figure 2.  Schematics of early and more recent spray models. After [19] 
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Atomization is the process by which the spray breaks up into small droplets, 

which directly affects the initial combustion behavior. Even with current techniques for 

visualizing sprays it is difficult to observe the detailed breakup of the fuel because of the 

dense sprays and small length scales. Therefore, computer modeling of spray behavior is 

important. Reitz [20] developed a method of modeling atomization in which “parcels” or 

“blobs” of fuel leave the injector. These parcels experience small perturbations in the 

flow, causing surface waves to form. Eventually the instability due to these surface waves 

causes the larger drops to break up into smaller drops and the wavelengths associated 

with the surface disturbances determine the size of the new drops. The fuel properties that 

most heavily govern atomization of the spray are density (ρ), viscosity (µ), and surface 

tension (σ). 

Reitz identifies four different breakup regimes for diesel spray, depending on the 

Weber number of the spray. The first regime is the Rayleigh breakup regime, which 

occurs at very low Weber numbers [20]. The Weber number is defined by the equation: 

2

e U LW ρ
σ

=       (1) 

where ρ is the density, U is velocity, L is a reference length, and σ is surface tension. The 

Weber number represents the ratio of inertial forces (numerator) to surface tension 

(denominator) [21]. In the Raleigh regime (We≈4.5), the jet does not break up until many 

nozzle diameters from the injector and the drop sizes are comparable to the diameter of 

the jet. The second regime is the first wind-induced regime (We≈18), and is very similar 

to the Raleigh regime in that the break-up occurs well downstream of the nozzle and the 

droplet sizes are on the order of the spray diameter. The second wind-induced regime 

(We≈45) is characterized by much smaller droplets with breakup still occurring 

downstream. The fourth regime is the atomization regime (We≈226), which has the 

highest Weber numbers, shows much smaller droplets than the nozzle diameter and 

breakup begins as soon as the fuel leaves the nozzle. The last regime is very characteristic 

of diesel sprays [22]. 
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Experiments have been conducted to determine what properties of fuels cause 

changes in the characteristics of the injection sprays. Ochoterena et al. used several 

different fuels and measured the liquid phase penetration depth and spray cone angle. The 

differences in penetration seemed to be caused by the variation in surface tension, 

viscosity, and density between the different fuels. In addition the authors concluded that 

the penetration depth was longer for fuels with low volatility [23]. This makes sense 

because one should expect that a fuel that more readily vaporizes will remain in the liquid 

phase in the spray for a shorter duration, shortening the liquid penetration depth. 

Ochoterena et al. also found that the spray cone angle was heavily influenced by 

the fuels’ viscosity. In those experiments the fuels with the higher viscosity showed wider 

cone angles than those with lower viscosity [23].  

Although there is little explanation in technical papers on exactly how fuels 

sprays are affected by the properties of the fuels, the work of Ochoterena et al. shows that 

different fuels will certainly produce differences in the injection spray due to their 

properties. This means that when a new fuel is being considered testing it to see how it 

will behave in a diesel injection environment can be extremely valuable. 

D. IMAGING DIESEL FUEL SPRAYS 

Optical methods have been developed to image diesel sprays and learn more 

about diesel injection. Two of the common methods used to image the spray are 

shadowgraph and schlieren imaging. Both methods involve passing a collimated beam of 

light through the spray, which is then focused and a camera is located just after the focal 

point. For the shadowgraph technique the camera sees what looks like a shadow image of 

the spray. What the camera actually sees is the difference in the refractive index between 

the fuel and the surrounding gases [24]. A shadowgraph image becomes a schlieren 

image when a “cutoff,” usually a knife edge is used to obscure part of the light at the 

focal point just before the camera. This increases the system’s sensitivity to differences in 

the refractive index [24]. These techniques are particularly useful because they show 

combustion locations where high temperatures result in low density. Since these density 

gradients can be seen with these imaging methods, they are useful in showing relative 
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temperatures at different locations in the injection [24]. Pickett et al. demonstrated that 

the shadowgraph and schlieren techniques are useful in obtaining information about what 

parts of the spray do not burn completely and about the lift-off length of the flame. 

Another commonly used method of imaging diesel sprays is Mie-scattering, in 

which a laser is used to illuminate the spray and a high-speed camera is used to image the 

light scattered off of the fuel droplets. As discussed in [24] this technique can be used 

with shadowgraph and schlieren imaging in order to determine the locations of vapor and 

liquid zones. 

Liquid fuel locations can be imaged by seeding the fuel with fluorescent dyes and 

using a laser to excite the dye which then fluoresces at a longer wavelength. If the 

wavelength of the emitted light is known, a narrow bandpass filter can be used to image 

this light and eliminate contributions from the excitation surface, providing information 

on the location of the liquid spray [25]. 

Chemiluminescence imaging is another method widely used to characterize the 

ignition process and visualize the combustion zones of the resulting flames. CH* and 

other radicals emit light at certain wavelengths which can be captured using a high-speed 

camera. This can be combined with the shadowgraph technique to distinguish the high 

temperature combustion from unburned areas in the spray, helping to find the sources of 

incomplete burning [24]. OH* and CH* chemiluminescence can also be used combined 

with shadowgraph imaging to determine the lift-off length. 

E. GOALS AND OBJECTIVES 

This research had three main goals. The first was to design, build, and calibrate a 

high-pressure and high-temperature combustion chamber for conditions of up to 3000 psi 

and bulk temeratures up to 500 degrees Fahrenheit. The second objective was to 

characterize spray patterns and droplet distributions of several different diesel injectors 

operating on conventional F-76 fuel as well as HRD and F-76 and HRD blends. The last 

goal was to begin analyzing ignition delay properties of alternative fuels using different 

Navy-specific injectors at initial pressures of 18 atmospheres and temperatures between 

800 and 1340 degrees Fahrenheit. 
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II. EXPERIMENTAL SETUP 

Two different experimental setups were utilized in this research. The first was an 

experimental combustion chamber used to image the injection and combustion of the 

diesel spray. The second was a rectangular test chamber with optical access designed to 

characterize the particle velocity and size distribution of the sprays produced. 

Engineering drawing for all the components discussed and utilized in this research are 

shown in Appendix A and Appendix B. 

A. COMBUSTION CHAMBER SETUP 

The combustion chamber was made up of several different parts: a) combustion 

chamber, b) fuel supply system, c) air supply system, d) exhaust system, e) high-speed 

imaging system and f) control system. Figure 3 shows the complete experimental setup 

used during the combustion experiments. This combustion chamber was designed to 

visualize the spray and combustion of diesel fuels from different injectors, including 

Navy-specific injectors, using both laser-induced fluorescence and CH* 

chemiluminescence. 

 
Figure 3.  Layout of Combustion Chamber Setup 
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1. Combustion Chamber 

The combustion chamber was designed to withstand peak pressures of 3000 psi 

and nominal bulk temperatures of 400 degrees Fahrenheit. The main body was fabricated 

from a large piece of 17-4 stainless steel and was heat treated to increase its strength. The 

material was chosen because of its good corrosion resistance, thermal stability, and its high 

yield strength in order to allow high internal pressures. Two flanges fabricated from the same 

material are located at each end. An O-ring groove was machined on each end to seal the 

chamber and the flanges are each attached with 20 ½-20 grade-eight bolts. The body of the 

chamber does not have any ports to preserve the strength of the chamber due to the expected 

pressures. Figure 4 shows an exploded view of the combustion chamber assembly. 

 
Figure 4.  Exploded View of Combustion Chamber Assembly 

Stress analysis for the chamber assembly was conducted in ANSYS using an 

internal pressure of 3,000 psi. The maximum Von Mises stress that was calculated was 

just under 20 ksi, which is well under the 180 ksi yield strength of 17-4 steel after heat 

treatment. This gives a factor of safety of over 9 for the main body of the chamber. 

Figure 5 shows the ANSYS Von Mises stress results. 
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Figure 5.  ANSYS Stress Analysis of Combustion Chamber 

a. Injector Flange 

One of the flanges bolted to the main chamber was designed to hold the 

fuel injector as well as to inject and exhaust the chamber products. This flange will be 

referred to as the “injector flange” throughout this thesis. The flange was machined out of 

12 inch bar stock of the same material as the main chamber and heat treated for increased 

strength. Stress analysis was conducted using ANSYS, finding a maximum Von Mises 

stress of 29.4 ksi, thereby providing a minimum factor of safety of 6.1. Figure 6 shows 

the results of the Von Mises stress analysis conducted in ANSYS. 
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Figure 6.  ANSYS Stress Analysis of Injector Flange 

The injector flange has two ports. A 1-1/16 inch port allows for a ¾ inch 

tube to deliver high pressure and temperature air into the chamber. A large orifice in the 

center of the flange is where adapters for individual injectors were attached to the flange. 

Since several injectors were intended for use with this combustion chamber the flange 

was designed so that instead of needing a new flange for each injector, a smaller adapter 

could be machined, significantly reducing the cost of the chamber and machining time 

needed to finish the parts. The inner bolt pattern was used to fasten the adapters to the 

injector flange. The injector adapters are discussed in more detail later in this section. 

b. Optical Window Flange 

The flange on the side opposite of the injector is used to hold a sapphire 

window so that the spray and CH* emission can be imaged. The flange is also made from 

hardened 17-4 stainless steel and is fastened to the main chamber using high-strength 

grade-eight bolts. There is a small recess in the outer face of the flange where the window 

is seated. Stress analysis of the window flange was also conducted using ANSYS, which 
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gave a maximum Von Mises stress of 26 ksi, giving it a factor of safety of 6.9. Figure 7 

shows the ANSYS stress analysis output for the optical window flange. 

 
Figure 7.  ANSYS Stress Analysis of Window Flange 

c. Optical Window 

The window has a diameter of three inches and a thickness of one inch and 

was designed for the chamber pressure of 3,000 psi. It was made out of sapphire because 

of its relatively high strength compared with other optical materials that were considered 

such as quartz. Stress analysis of the window was conducted in ANSYS. The outer half 

inch of the radius was fixed, with a pressure of 3,000 psi on the opposite side of the 

sapphire. This analysis provided a factor of safety greater than 10. 

d. Optical Window Frame 

The optical window frame is a metal adapter that holds the window in 
place and seals the leak paths of the air around the window. Figure 8 shows a section 
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view of the optical window frame. The orifice that is used to look through is two inches 
in diameter at the smallest point. This is the same size as the orifice in the optical window 
flange. The optical window frame has two O-ring grooves: one acts as a face seal against 
the sapphire window, and the other is installed in the corner of the face that connects to 
the optical window flange (see Figure 8.). 

 
Figure 8.  Optical Window Frame 

One of the design challenges of the window frame was that there were two 
leak paths that needed to be sealed, one between the window frame and the window 
flange and the other between the outside of the window and the window frame. Both 
paths needed to be sealed without allowing the sapphire to touch metal, which would 
increase the possibility of fracture. Any interference of the window and metal, 
particularly asymmetric contact due to the window shifting under load, could lead to local 
chipping or cracking and subsequent window failure. To solve this problem O-rings are 
used on the top and bottom of the window with shallow O-ring grooves. The O-rings 
crush into the grooves but protrude far enough to prevent the window from reaching the 
metal face on top or bottom. An O-ring on the inner corner seals the leak path between 
the flange and the window frame. 

2. Fuel Supply System 

Several injectors were available for use with the combustion chamber. An adapter 
was designed for each of the injectors to interface with the same orifice in the injector 
flange to avoid creating a new flange for each injector. The three injectors that were 
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focused on in this thesis are a Sturman research injector, a Yanmar injector, and an 
Electro Motive Diesel (EMD) injector. The three injectors are shown in Figure 9.  

 
Figure 9.  Injectors Used for Testing. From top to bottom: Yanmar injector, Sturman 

injector, EMD injector. 

Because all the adapters were designed to fit in the same injector flange, the outer 
dimensions of the adapters were the same, with the inner dimensions designed to fit the 
individual injector. They were all made of the same 17-4 stainless steel as the main 
combustor and two flanges. In addition to each injector using its own adapter, the 
injectors were all actuated differently. In this section the design of each adapter and its 
method of actuation are described. 

a. Sturman Injector 

The Sturman injector was custom-made for the NPS Rocket Lab for a 

previous research program. Since then it has been used as a research injector for various 

fuels. Figure 10 shows an assembly cross section of the adapter that was made for this 

injector. 
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Figure 10.  Cross-sectional View of Sturman Adapter Assembly 

The adapter bolts onto the injector flange using eight high-strength grade-

eight bolts. The injector was held in place by small adapter clips that were bolted to the 

adapter. 

The Sturman injector is hydraulically powered using up to 3000 psi of 

hydraulic fluid with a fuel pressure of 100 to 200 psi. It is actuated electrically using a 

high-power driver to actuate a fast-acting spool valve that has a variable 1-5 millisecond 

pulse width. The internal design of the Sturman injector creates a 6:1 pressure 

amplification of the hydraulic supply pressure at the tip of the injector. Figure 11 shows 

the Sturman injector setup in the combustion chamber. Fuel and hydraulic fluid were 

stored in high-pressure tanks which are shown in Figure 11. These tanks were pressurized 

using Nitrogen gas. 
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Figure 11.  Sturman Injector Setup 

b. Yanmar Injector 

The Yanmar injector is the smallest of the injectors studied in this 

research. A cross section of the adapter mated to the flange is shown in Figure 12. 

The outer dimensions of the Yanmar adapter were identical to those of the 

Sturman adapter. The rest of the adapter was designed for the dimensions of the Yanmar 

injector. The adapter collar shown in Figure 12 prevented the injector from sliding too far 

into the adapter in order to allow the fuel line to be attached to the injector. The adapter 

clip mated with a lip on the injector and bolted the injector to the adapter so that when the 

chamber was pressurized the injector was held in place. 

The Yanmar injector is essentially a nozzle with a cracking pressure of 

about 250 bar (3,625 psi). The fuel was stored in a 5,000 psi tank and delivered to the 

injector by a fast-acting high-pressure solenoid valve  
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Figure 12.  Cross-section of Yanmar Adapter Assembly 

c. EMD Injector 

The largest injector included in this thesis research is made by EMD. 

Figure 13 shows a cross-section of the adapter designed for this injector. 

 
Figure 13.  EMD Adapter Assembly 
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The EMD adapter held the injector down using an adapter clip with two 

high-strength grade-eight bolts. These bolted straight into the adapter and prevented the 

injector from moving with respect to the adapter, thereby creating a stacked assembly. 

The EMD injector needed to be mechanically actuated by using a 

hydraulic cylinder to depress the plunger, which pressurized the fuel, causing the nozzle 

to inject once the pressure was high enough. The hydraulic cylinder adapter shown in 

Figure 13 was used to ensure that the hydraulic cylinder pushed evenly on the center of 

the plunger.  

3. Air Supply System 

The combustion chamber needed to be supplied with high pressure and 

temperature air to closely match the in-cylinder conditions of a diesel engine. Four high-

pressure air tanks were used to supply this air. The tanks are rated for 5,000 psi at room 

temperature and over 3000 psi at a temperature of 1000° F. For this application the tanks 

were wrapped in heater tape and placed in an insulated box to heat them to approximately 

1,000° F. These tanks were supplied with dry air with pressures up to 1,500 psi. A high-

pressure and temperature valve was used to control when the air was allowed to rush into 

the chamber. Figure 14 shows a schematic of the air supply system. The high pressure 

delivery lines were also wrapped in heater tape (not shown) to minimize heat loss from 

this tubing. 
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Figure 14.  Air Supply System Schematic 

Air enters the chamber through a large port in the injector flange which can be 

seen in the cross-sectional Figure 13 as a straight hole through the injector flange. When 

the air enters the chamber it is turbulent, mimicking the conditions that would be seen in 

the cylinder of a diesel engine, and the fuel injection event begins soon afterward. 

4. Exhaust System 

Once the injection and combustion were completed the chamber was purged of 

the exhaust. Since the chamber was at extremely high pressures and more ports in the 

flanges would create more stress concentrations, lowering the factor of safety for the 

system, the large port that was used to supply the air was also used to remove the 

exhaust. An exhaust valve was opened to allow most of the high pressure air and 

combustion products that were already in the chamber after combustion to leave the 

system. In order to remove the combustion products still remaining in the chamber, the 
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exhaust valve was closed and shop air at 100 psi was brought into the vessel. Once the 

chamber reached shop air pressure the exhaust valve was opened again to remove the 

excess air. This process was repeated twice to ensure that very little of the combustion 

products were left in the chamber after each run. After two purge cycles, a vacuum pump 

could also be used to completely evacuate the chamber if necessary. 

5. High-Speed Imaging System 

The fuel injection and combustion events imaged in this research lasted less than 

10 milliseconds. A high speed camera was used to provide images of the fuel injection 

and subsequent combustion process. The camera used for this research was a Photron 

SA5. This camera was used in combination with a laser that illuminated a fluorescent dye 

(Pyrromethene 567A) in the fuel to capture the fuel injection event so that ignition delays 

could be referenced. The Explorer XP 532 nm laser was pulsed with a frequency varying 

from 100 to 300 kHz which correspond with 52.9 µJ per pulse and 15.5 µJ per pulse, 

respectively. Figure 15 contains a schematic of the setup of the optics system. 

 
Figure 15.  Schematic of Optics Setup 
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Although the laser emitted light at wavelength of 532 nm, the light given off of 

the dye in the fuel as a result of this excitation had a wavelength of 570 nm. A 570 nm 

narrow bandpass filter with a Full Width at Half Maximum (FWHM) of 10 nm was used 

to show only the light given off of the dye due to the laser illumination, providing a high-

quality image of the fuel spray. The combustion event was individually imaged using 

CH* chemiluminescence located at 431.5 nm and also used a narrow band interference 

filter.  

6. Control System 

The control system for the combustion chamber filled the chamber to the desired 

initial pressure. The pressure in the air tanks was manually set and once the heater tape 

brought the air to the desired temperature, the control system opened the high pressure 

and temperature valve, allowing the high pressure, hot air from the tanks to flow into the 

combustion chamber. After a one second delay, the high-temperature valve was closed 

and the injector and camera were triggered at the same time. High speed pressure and 

temperature transducers located in the air delivery tubing just outside the chamber, which 

can be seen in Figure 14, recorded data for the air injection as well as the fuel injection 

and combustion events. The controller then opened the exhaust valve, allowing the hot, 

high-pressure air to leave the chamber. The valve for the purge air was opened, allowing 

the air to flow into the chamber, after which the exhaust valve was again opened. This 

purge cycle was repeated once more, ensuring that the combustion products were 

removed from the chamber. 

B. PARTICLE SIZING CHAMBER SETUP 

The particle sizing chamber was designed to analyze the particle sizes of injection 

sprays using a Phase Doppler Particle Anemometry (PDPA) laser system. The 

experimental setup was composed of four subsystems: a) spray chamber, b) fuel delivery 

system, c) PDPA laser system, and d) control system. Figure 16 shows the experimental 

setup of the chamber. 
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Figure 16.  Particle Sizing Chamber Setup 

1. Spray Chamber 

The particle sizing chamber was a rectangular box designed to withstand 

pressures of up to 150 psi, but in this experiment the box was used at ambient pressure. 

One face of the box had an opening where an injector adapter flange was attached. The 

injector sprayed into the box and the laser system determined the size of the particles 

contained within the spray. The chamber is made of aluminum for manufacturing 

convenience because stronger materials, such as stainless steel, were not required to meet 

the strength requirements of the vessel. 

2. Fuel Delivery System 

As with the combustion chamber described earlier in this section, the spray 

chamber was designed to accept different injectors. The square part on the injector side of 

the box was used to attach the injectors to the chamber. In this section the method of 

attaching each of the injectors is discussed.  
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a. Sturman Injector 

A mounting apparatus was created out of Aluminum bar stock for the 

Sturman injector. The bottom of the injector was bolted to the mount, which could 

translate further into the box so the injector position could be changed. The mount could 

also move up or down, allowing the tip of the injector to be moved in two dimensions, 

only being constrained in that it needed to be along the vertical plane bisecting the 

injector side of the box. The experimental setup of the Sturman injector is shown in 

Figure 17. 

 
Figure 17.  Sturman Injector Particle Sizing Setup 

The Sturman injector was hydraulically controlled and electrically 

powered, using a 3000 psi nitrogen gas tank to pressurize the hydraulic fluid and 

regulated to 200 psig for the fuel. The hydraulic reservoir shown in Figure 17 collected 

the hydraulic fluid that was spilled out of the injector once it had been used. 



 29 

b. Yanmar Injector 

A separate square flange was designed to adapt the Yanmar injector to the 

particle sizing chamber. This was because most of the injector needed to be inside the 

chamber. The laser system only takes data at a very specific location and since the 

injector was small, most of it had to be inside the box in order for the spray to cross that 

point. This flange was designed so the back of the injector fit into a slot in the flange. A 

bolt that screwed into the back of the injector held it in place. An exploded view of the 

square flange adapter assembly is shown in Figure 18. 

 
Figure 18.  Yanmar Injector Particle Sizing Adapter 

The sealing ring shown in Figure 18 was designed with an O-ring groove 

on the underside to seal the box if testing called for the chamber to be internally 

pressurized. The circular fitting in the flange was fabricated to bring fuel to the inlet of 

the injector, which was inside the chamber. 
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c. EMD Injector 

The adapter piece for the EMD injector was designed to work in both the 

combustion chamber and the particle sizing chamber. This EMD adapter is shown in 

Figure 13. Since the injector is approximately 12 inches in length the original adapter was 

designed with both experimental setups in mind. The adapter was designed for the 

injector to penetrate five inches into the chamber, very close to the ideal position for the 

PDPA laser to capture the spray particle size. Beyond this only a small adjustment of the 

laser system would be required in order to collect useful data. The only difference 

between the EMD injector setup in this chamber and in the combustion chamber was that 

the flange the adapter was designed to mate with was square rather than circular. 

3. PDPA Laser System 

The PDPA laser system, made by Dantec Dynamics, is comprised of a laser and a 

laser detector, shown in Figure 16. The system uses two crossed laser beams to measure 

the size of the particles of the spray. There is a small volume where the two beams cross 

through which particles occasionally pass. Light from these two laser beams is scattered 

off of the particles that pass through this volume in all directions, including toward the 

detector. The box labeled “PDPA Laser Detector” in Figure 16 contains two light 

detectors that receive the scattered light from the spray particles that pass through the 

laser crossing. Both of these detectors receive light of the same frequency but of different 

phases because of the difference in location of the receivers. The magnitude of the 

difference between the two phases can be used to determine the size of the particle which 

scattered the Doppler burst [26]. In this experiment, a backward scattering angle of 148 

degrees was used and the system was capable of giving particle sizes up to 332 

micrometers. 

4. Control System 

The control system for the particle sizing chamber was used to actuate the 

injectors as well as to record the particle size data. Testing was only completed with the 

Sturman injector due to time restrictions. A pulse generator was used to create 10 ms 

injection pulses at a frequency of 10 Hz for 30 seconds. The extended time allowed the 
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PDPA system to find larger numbers of particles and increase the number of data points 

the experiments generated. The BSA Flow Software provided by Dantec Dynamics 

collected the particle size data as the test was conducted and output a text file with the 

data. 
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III. RESULTS AND ANALYSIS 

This section describes the particle sizing results along with the initial combustion 

chamber calibration. 

A. PARTICLE SIZING CHAMBER 

Three different injectors had adapters fabricated for use in the particle sizing 

chamber. However, due to fabrication delays and time restrictions, only the Sturman 

injector was able to be tested. The mount for the Sturman injector allowed its position to 

be adjusted with respect to the injector orifice. This flexibility was used to locate the 

position where the injection spray best intersected with the laser measurement volume, 

providing a large number of data points when testing. The optimal location determined 

for the Sturman injector was for the laser to be 1.25 inches radially from the centerline of 

the injector and 3.375 inches from the tip axially. Many injectors have several individual 

sprays generated from multiple small holes in the injector, but the Sturman injector had a 

conical spray pattern, thereby simplifying the positioning for the spray characterization. 

Testing was done for three different fuels: conventional F76 diesel fuel used by 

the U.S. Navy, hydrotreated renewable diesel fuel (HRD) derived from algae, and a 50/50 

blend of F76 and HRD. The injection event lasted for a maximum of 10 ms with a 

frequency of 10 Hz for 30 seconds. For each of the fuels the fuel pressure was held 

constant at 200 psi and the hydraulic fluid pressure was varied from 600 to 1600 psi in 

200 psi increments. The Sturman injector has a six to one pressure ratio, resulting in a 

range of fuel pressures at the tip of the injector from 3600 to 9600 psi. Each test point 

was repeated until at least 450 validated data points were collected. Dantec Dynamics’ 

BSA Flow Software output a list of the determined particle sizes as well as a histogram. 

The list was exported to a text file that was used in conjunction with a MATLAB code 

that processed the data for the calculation of characteristic diameters. This code can be 

found in Appendix C. 

Multiple tests were performed at the same conditions and MATLAB was used to 

combine the data sets into one larger set. The code eliminated any data points above 332 
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micrometers which the aperture lens was incapable of detecting. “Mask A,” the aperture 

lens used in this testing, is discussed in Dantec Dynamics’ reference manual [26]. The 

resolved particle diameters were sorted into 50 diameter bins, and bins with only one or 

two data points were zeroed to remove outliers. The remaining bins were used to 

calculate the average diameter of the particles as well as the Sauter Mean Diameter 

(SMD).  

Sauter Mean Diameter is a characteristic diameter that relates the ratio of the 

volume to surface area of the particles contained in a spray. SMD represents the diameter 

of a spray particle with the same ratio of volume to surface area as the spray as a whole 

and is calculated using the equation: 
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In the SMD equation ni represents the number of data points for bin i of diameter 

Di. A small SMD is ideal for combustion because there is more surface area available to 

support combustion for a given volume of fuel. 

The code exports the average diameter of the particles, the SMD, and bin sizes 

and number of data points in each bin, normalizing the number of data points by dividing 

each by the maximum number of data points contained in a particular bin, meaning that 

the largest bin has a value of 1. These outputs were then plotted, comparing the three 

different fuels used. Figure 19 shows a typical histogram plot. 
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Figure 19.  Typical Histogram. Taken from 1600 psi data point for F-76 

A linear curve fit of the Sauter Mean Diameter was plotted as a function of 

hydraulic fluid pressure and can be seen in Figure 20. As expected, for all of the fuels the 

SMD decreases with increasing hydraulic pressure. This means that the average ratio of 

the surface area to the volume is increasing, which supports higher aggregate combustion 

rates. Figure 20 shows that as the amount of HRD in the fuel increases, the SMD also 

increases.  
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Figure 20.  Sauter Mean Diameter as a Function of Hydraulic Pressure 

B. COMBUSTION CHAMBER CALIBRATION 

The combustion chamber was calibrated by injecting air into the system without 

injecting fuel to determine the final temperatures and pressures inside the combustion 

chamber milliseconds before fuel injection would occur. Figure 21 shows a typical 

pressure and temperature trace from the high speed and low speed transducers as well as 

an Omega type-K 1/16 inch thermocouple with an exposed junction located 1.5 inches 

inside the chamber. The high-speed Kistler transducer produced the pressure trace that 

spikes initially and then quickly trails off. This is due to the piezoelectric transducer 

response for a short time constant, which causes the charge (and associated voltage) to 

fall quickly under steady-state conditions. Although the initial overpressure read by both 

transducers was caused by transient gas dynamics, the lower frequency response pressure 

transducer eventually rises and captures the effective final pressures after a few tenths of 
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a second. The Kistler high-speed transducer will continue to be used to show the rate at 

which the mixing of the two gases occurs and to capture future pressure rises during 

combustion events. 

 
Figure 21.  Pressure and Temperature Response in Combustion Chamber 

The pressure traces in Figure 21 show that the fill process is complete in 200 ms. 

However, the temperature rise lags behind the pressure rise due to the low frequency 

response of conventional thermocouples. It was believed that the actual gas temperature 

rise was more similar to the pressure behavior. 
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An Excel spreadsheet was created that predicted the final chamber temperature 

and pressure for the given initial condition and assumed the constant-volume and 

adiabatic mixing of two gases. The calculations assumed constant internal energy and an 

average value for the specific heat at constant volume. The results of this code were 

compared to the measured temperature and pressure after mixing, knowing the initial 

pressures and temperatures in both the combustion chamber and the air tanks. Table 3 

shows the different conditions that were tested and the resulting temperature and 

pressures after mixing, compared with the values predicted. 

Initial Values Measured Final 
Values 

Expected Final 
Values 

Chamber 
P[psig] 

Chamber 
T [°F] 

Air Tank 
P [psig] 

Air Tank 
T [°F] P [psig] T [°F] P [psig] T [°F] 

58 307 858 900 194 382 250 710 

17 309 880 902 151 407 224 803 

0 314 900 901 141 418 216 852 

4 353 835 992 127 448 204 920 

1 377 944 899 157 472 228 858 

 

Table 3.   Combustor Calibration Data Points 

Table 3 shows that the temperatures measured by the thermocouple fall well short 

of the expected temperatures calculated based on the adiabatic mixing assumption. A 

potential cause of this discrepancy was believed to be that not all of the tubing was well 

insulated and heated. Because of this, there would naturally be heat transfer into portions 

of the plumbing, thereby violating the adiabatic assumption. Additionally, the 

thermocouple location within the chamber could register temperatures lower than the 

bulk temperature in the chamber or, is simply too slow to respond. 
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In order to increase the temperature in the chamber, the ability to conduct an 

ethylene/air pre-burn with make-up oxygen was added. This system was designed to fill 

the chamber with ethylene gas and ignite it using a spark plug, raising the temperature 

and pressure in the chamber to desired values so fuel could be injected and would then 

auto-ignite due to the elevated temperatures and pressures in the chamber. In addition to 

adding a pre-burn capability, a pebble-bed heater would enable the chamber to reach the 

temperatures required for fuel autoignition. This would involve a tank full of ball 

bearings kept at high temperatures. Due to the large amount of surface area of the ball 

bearings, the air flowing over this pebble bed from the high pressure tanks would be 

heated further before entering the combustion chamber. 
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IV. SUMMARY AND CONCLUSIONS 

A combustion chamber capable of high-pressure and high-temperature testing was 

designed, built, and calibrated for the evaluation of conventional and alternative fuels 

under consideration for diesel engines. This chamber was created to withstand pressures 

of 3000 psi at temperatures up to 500 degrees Fahrenheit and provide the ability to 

dynamically inject clean heated air at temperatures up to 900 degrees Fahrenheit or 

perform an ethylene/air preburn with make-up oxygen to produce the desired initial 

conditions. By utilizing a dynamic fill option, varying levels of CO, CO2, and H2O can be 

prescribed during the ignition delay testing to simulate varying levels of residual exhaust 

products in actual engines. 

Three Navy-relevant fuel injectors were acquired and interfacing hardware was 

manufactured for the characterization of the sprays from those injectors. Particle sizing 

data was acquired for a Sturman Industries research injector over a tip fuel pressure range 

of 3,600-9,600 psi providing average particle diameter and Sauter Mean Diameter values. 

Although only the Sturman injector was evaluated due to time constraints, the results 

showed decreasing Sauter Mean Diameters with increasing fuel pressure, producing 

values near 90 microns at the highest fuel pressure evaluated. Although F-76 produced 

generally smaller particle sizes (approximately 10-20%) than the HRD fuel, additional 

data is required before this trend could be conclusively validated. 

During calibration and checkout testing of the combustion chamber, the 

temperatures reached inside the chamber were significantly lower than the values 

calculated assuming adiabatic mixing. This was believed to be due to excessive heat loss 

in the tubing between the heated, high pressure air tanks and the combustion chamber. 

These losses were evident across the entire span of operating range, but the discrepancy 

was greater at higher temperatures where greater temperature differences existed. 

Although conditions sufficient for ignition were not obtained for the dynamic clean air 

injection events, solutions were identified and are being implemented that will allow the 

chamber to reach the desired temperatures. 
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V. FUTURE WORK 

The particle size testing will be continued using the same fuels and different 

injectors, including those made by Yanmar and EMD, as well as a Caterpillar Inc. 

injector, listed in Table 1.  

The calibration of the combustion chamber will be completed by improving the 

heat transfer of the dynamic air delivery system. One way this can be done is by using 

higher temperature heat tape on the tubing, preventing much of the unnecessary heat loss 

from the system. A second method that may increase the post-mixing temperature of the 

air in the combustion chamber just before injection is using a pebble bed heater using 

extremely high-temperature ball bearings, thereby providing a temperature boost 

immediately before entering the chamber. 

With the calibration of the combustion chamber complete laser fluorescence will 

be used to determine the injection delay time so that CH* chemiluminescence and 

chamber pressure can be used to determine the ignition delay time of each of the fuels 

using the Sturman, Yanmar, and EMD injectors. Once an adapter is designed for the 

Caterpillar injector, injection and ignition delay times for the three fuels will be 

determined using that injector.  
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APPENDIX A. FABRICATION DRAWINGS FOR COMBUSTION CHAMBER 

A. HIGH PRESSURE CHAMBER 

 
Figure 22.  High Pressure Chamber Fabrication Drawing (View 1 of 2) 
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Figure 23.  High Pressure Chamber Fabrication Drawing (View 2 of 2) 
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B. INJECTOR FLANGE 

 
Figure 24.  Injector Flange  Fabrication Drawing (View 1 of 2) 
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Figure 25.  Injector Flange  Fabrication Drawing (View 2 of 2) 
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C. OPTICAL WINDOW FLANGE 

 
Figure 26.  Optical Window Flange Fabrication Drawing (View 1 of 3) 
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Figure 27.  Optical Window Flange Fabrication Drawing (View 2 of 3) 

O.CXX) 
0.2:-D -0.002 • I I . 

I 

SECTION D-D 

SCALE 1 : 1 

PROPllfTAlY AND CONFIDENTIA.I 

THE IHfOtW.TIOH COHTAIHEI> IH THI 
I>RAVIAHG IT HE tOlE HOPftTYOF 
<IHURT COMPANY NAME HEU>. ANY 
ltfPROI>UCTIOH IH PART OR A$ A W'HOlf 
VIAIHOU THfW'RRTfH PUMI$10H Of 
<IHURT COMPANY NAME HUE> I 
PROHI8Rfl>. 

5 

l.()l.() 

88 
00 
+ ' 

§ 
0-1 

B 

HUTAUY 

APPliCATIO N 

Uff l> O H 

Quantity: 1 
WlfU OIH U W'IH SHC:rlf£>: 

I>MKttOKI AU IH IHC:HU 
TOLUAN(:ft : 
ftAC:HOHAL! 
A NGUlA R: M\ CH! UHI>! 
TWO PIA ¢! UC:II\M L ! 
THRU PtA C:! l>fC:II\ML ! 

IHTUPR!I' CUOMfUIC: 
TOLUAHC:IH(J Pft: 

17-4 ss 
""'" 

1>0 HO TtC:Al! I>RAVIAHG 

3 

OlAWH 

CHf CKf l> 

fHG APH. 

MfG APH. 

.A. 
CO MMENT$: 

HAMf 

.. 

Warren Fischer 
(831) 656-2327 

2 

TITLE: 

8 X r:lJ 0.272 W 0.75 
5!16-24 UNF- 1 B w 0.63 

NPS Rocket Lab 

High Pressure Flange 
Sapphire Window 

SIZE DWG . NO . REV 

1 1 February 2013 

SCALE: 1:5 WEIG HT: SHEET 2 O F 3 



 51 

 
Figure 28.  Optical Window Flange Fabrication Drawing (View 3 of 3) 
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D. OPTICAL WINDOW 

 
Figure 29.  Optical Window Fabrication Drawing 
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E. OPTICAL WINDOW FRAME 

 
Figure 30.  Optical Window Frame Fabrication Drawing (View 1 of 2) 
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Figure 31.  Optical Window Frame Fabrication Drawing (View 2 of 2) 
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F. STURMAN INJECTOR ADAPTER 

 
Figure 32.  Sturman Injector Adapter Fabrication Drawing (Page 1 of 2) 
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Figure 33.  Sturman Injector Adapter Fabrication Drawing (Page 2 of 2) 
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Figure 34.  Sturman Injector Adapter Retainer Clip Fabrication Drawing 
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G. YANMAR INJECTOR ADAPTER 

 
Figure 35.  Yanmar Injector Adapter Fabrication Drawing (View 1 of 2) 
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Figure 36.  Yanmar Injector Adapter Fabrication Drawing (View 2 of 2) 
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Figure 37.  Yanmar Injector Adapter Collar Fabrication Drawing 
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Figure 38.  Yanmar Injector Adapter Clip Fabrication Drawing 
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H. EMD INJECTOR ADAPTER 

 
Figure 39.  EMD Injector Adapter Fabrication Drawing (Page 1 of 3) 
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Figure 40.  EMD Injector Adapter Fabrication Drawing (Page 2 of 3) 
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Figure 41.  EMD Injector Adapter Fabrication Drawing (Page 3 of 3) 
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Figure 42.  EMD Injector Adapter Clip Fabrication Drawing (View 1 of 2) 
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Figure 43.  EMD Injector Adapter Clip Fabrication Drawing (View 2 of 2) 
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Figure 44.  Fabrication Drawing for EMD Injector Adapter between Hydraulic Cylinder 

Output Rod and Injector Plunger (View 1 of 2) 
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Figure 45.  Fabrication Drawing for EMD Injector Adapter between Hydraulic Cylinder 

Output Rod and Injector Plunger (View 2 of 2) 
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Figure 46.  Fabrication Drawing for EMD Injector Adapter Hydraulic Cylinder Retaining Plate (View 1 of 2) 
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Figure 47.  Fabrication Drawing for EMD Injector Adapter Hydraulic Cylinder Retaining Plate (View 2 of 2) 
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APPENDIX B. FABRICATION DRAWINGS FOR PARTICLE SIZING CHAMBER 

A. ADAPTER PLATE FOR STURMAN AND EMD INJECTORS 

 
Figure 48.  Fabrication Drawing for Sturman and EMD Injector Adapters  
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B. YANMAR INJECTOR ADAPTER PLATE 

 
Figure 49.  Yanmar Injector Adapter Plate Fabrication Drawing (View 1 of 2) 
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Figure 50.  Yanmar Injector Adapter Plate Fabrication Drawing (View 2 of 2) 
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Figure 51.  Yanmar Injector Adapter Sealing Ring Fabrication Drawing
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APPENDIX C. MATLAB CODE USED TO ANALYZE PARTICLE 
SIZE DATA 

%Code Authored by Mr. Dave Dausen, Lab Engineer, NPS Rocket Propulsion 
Lab, modified by Warren Fischer 
 
%Program to read from Dantec PDPA Exported Data textfiles... 
%  Data file with the individual particles i.e. 
SturmanInjParticles20MayRun10.txt 
  
%Data Columns 
%1.  Particle Number 
%2.  AT (ms) 
%3.  TT (micro sec) 
%4.  LDA1 (m/s) 
%5.  U12 (deg) 
%6.  U13 (deg) 
%7.  Diameter (micro meter) 
  
clc 
clear all 
close all 
  
%The Data is imported and sorted.  This is simple though has the 
ability  
%  to read in several datafiles and proccess the data.  Output is the 
%  a histogram with diameters. 
  
%  These are text and file inputs.  
Location = 'F:\ParticleSizeProcessing';     %Update Drive  
Folder = 'Results'; 
Filename = 'BioFuelParticles'; 
Inj = 'Sturman'; 
Fuel = 'HRD'; 
Setting = '1600';  %psi 
  
%Multiple imports because there may be multiple data sets at a single 
%pressure setting  
BioParticleOrig1 = importdata('Data\SturmanInjParticles21MayRun9.txt', 
'\t');  %Original for testing 
%BioParticleOrig2 = importdata('Data\SturmanInjParticles21MayRun8.txt', 
'\t');  %Importing multiple files 
% BioParticleOrig3 = 
importdata('Data\SturmanInjParticles20MayRun8.txt', '\t'); 
% BioParticleOrig4 = 
importdata('Data\SturmanInjParticles20MayRun9.txt', '\t'); 
% BioParticleOrig5 = 
importdata('Data\SturmanInjParticles20MayRun10.txt', '\t'); 
% BioParticleOrig6 = 
importdata('Data\SturmanInjParticles20MayRun4.txt', '\t'); 
% BioParticleOrig7 = 
importdata('Data\SturmanInjParticles20MayRun5.txt', '\t'); 
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BioParticleRawData1 = BioParticleOrig1.data(:,7); 
%BioParticleRawData2 = BioParticleOrig2.data(:,7); 
% BioParticleRawData3 = BioParticleOrig3.data(:,7); 
% BioParticleRawData4 = BioParticleOrig4.data(:,7); 
% BioParticleRawData5 = BioParticleOrig5.data(:,7); 
% BioParticleRawData6 = BioParticleOrig6.data(:,7); 
% BioParticleRawData7 = BioParticleOrig7.data(:,7); 
  
% BioParticleDiameterData = vertcat(BioParticleRawData1, 
BioParticleRawData2,... 
%     BioParticleRawData3, BioParticleRawData4, BioParticleRawData5,... 
%     BioParticleRawData6, BioParticleRawData7);  
  
%BioParticleDiameterData = vertcat(BioParticleRawData1, 
BioParticleRawData2); 
  
BioParticleDiameterData = BioParticleRawData1;     %Use if only one 
data file 
  
DataPoints = length(BioParticleDiameterData); 
%This is to analyze the Particles in BioParticleDiameterData and plot 
%  The maximum is interpolated from LDA and PDA manual, Page4-75, Table 
A1.2 
BioParticles = sort(BioParticleDiameterData); 
MinD = 0.5;  %Minimum particle size micrometer 
MaxD = 332;  %Maximum particle size using Mask A (PDPA detector), 
micrometer 
  
%Search for values 0.5 to 332 micron for Histogram 
X1=1; 
for R = 1 : DataPoints 
    if BioParticles(R) <= MinD 
        X1 = R; 
    end 
    if BioParticles(R) <= MaxD 
        X2 = R; 
    end 
end 
  
%Post Processing particles follwing (Average and StandardDev) 
Diameter10Individual = BioParticles(X1:X2); 
  
  
[NumPart,Bin] = hist(Diameter10Individual,50); 
%Filters out bins with small counts 
for R = 1 : length(Bin) 
    if NumPart(R) <= 2 
        NumPart(R) = 0; 
    end 
end 
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Diameter10=Bin(1:length(Bin)); 
%Calculate Average Diameter10 based on bin diameter and number of 
counts in 
%each bin 
Diameter10Calc=0; 
FinalNumPart=0; 
for S=1:length(Bin); 
Diameter10Calc=Diameter10Calc+Diameter10(S)*NumPart(S); 
FinalNumPart=FinalNumPart+NumPart(S); 
end 
AverageD10=Diameter10Calc/FinalNumPart; 
  
%Calculate Sauter Mean Diameter based on bin diameter and number of 
counts 
%in each bin 
SMDTop = 0; 
SMDBottom = 0; 
for K = 1 : length(Diameter10) 
    SMDTop = Diameter10(K)^3*NumPart(K) + SMDTop; 
    SMDBottom = Diameter10(K)^2*NumPart(K) + SMDBottom; 
end 
SauterDiameter32 = (SMDTop/SMDBottom); 
  
  
figure(1) 
hold on 
NumPartNorm = (NumPart / max(NumPart)); 
bar(Bin,NumPartNorm); 
  
grid on 
title([Inj,' Injector ',Fuel,' at ',Setting,' Psi:  Number of Particles 
Vs. Size'],'fontsize',10,'fontweight','b'); 
  
text(120,0.95,['Average diameter d[1,0]: ',num2str(AverageD10),' \mu 
m'],'FontSize',10,'fontweight','b','EdgeColor','k'); 
text(120,0.85,['Sauter Mean diameter d[3,2]: 
',num2str(SauterDiameter32),' \mu 
m'],'FontSize',10,'fontweight','b','EdgeColor','k'); 
  
xlabel('Particle size (\mu meters)','fontsize',10,'fontweight','b'); 
ylabel('Number of Particles 
(Normalized)','fontsize',10,'fontweight','b'); 
axis([MinD MaxD 0 1.05]); 
  
%Writing text and pictures to folder... 
mkdir(Location,Folder); 
warning off; 
  
%Datafile is in the following format 
%  1.  Bin numbers (Micrometer)(X-axis) 
%  2.  Particle Data (Y-axis) 
%  3.  Normalized Particle Data (Y-axis) 
%  4.  Average D10 (Micrometers) 
%  5.  Sauter D32 (Micrometers) 
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%  6.  Total number of Particles 
  
dlmwrite([Location,'/',Folder,'/',Filename,Inj,Fuel,Setting,'Psi.txt'],
Bin, 'delimiter', '\t', ... 
         'precision', '%3.1f','newline','pc'); 
dlmwrite([Location,'/',Folder,'/',Filename,Inj,Fuel,Setting,'Psi.txt'],
NumPart, 'delimiter', '\t', ... 
         'precision', 3, '-append','newline','pc'); 
dlmwrite([Location,'/',Folder,'/',Filename,Inj,Fuel,Setting,'Psi.txt'],
NumPartNorm, 'delimiter', '\t', ... 
         'precision', 3, '-append','newline','pc'); 
dlmwrite([Location,'/',Folder,'/',Filename,Inj,Fuel,Setting,'Psi.txt'],
AverageD10, 'delimiter', '\t', ... 
         'precision', '%3.4f','-append','newline','pc');      
dlmwrite([Location,'/',Folder,'/',Filename,Inj,Fuel,Setting,'Psi.txt'],
SauterDiameter32, 'delimiter', '\t', ... 
         'precision', '%3.4f','-append','newline','pc');  
dlmwrite([Location,'/',Folder,'/',Filename,Inj,Fuel,Setting,'Psi.txt'],
DataPoints, 'delimiter', '\t', ... 
         'precision', '%3.0f','-append','newline','pc');  
      
DataPlot = getframe(figure(1)); 
imwrite(DataPlot.cdata,[Location,'/',Folder,'/',Filename,Inj,Fuel,Setti
ng,'Plot.tiff'],'tiff'); 
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